Learning Behavioral Parameterization using Spatio-Temporal Case-Based Reasoning

نویسندگان

  • Maxim Likhachev
  • Michael Kaess
  • Ronald C. Arkin
چکیده

This paper presents an approach to learning an optimal behavioral parameterization in the framework of a Case-Based Reasoning methodology for autonomous navigation tasks. It is based on our previous work on a behavior-based robotic system that also employed spatio-temporal case-based reasoning [3] in the selection of behavioral parameters but was not capable of learning new parameterizations. The present method extends the case-based reasoning module by making it capable of learning new and optimizing the existing cases where each case is a set of behavioral parameters. The learning process can either be a separate training process or be part of the mission execution. In either case, the robot learns an optimal parameterization of its behavior for different environments it encounters. The goal of this research is not only to automatically optimize the performance of the robot but also to avoid the manual configuration of behavioral parameters and the initial configuration of a case library, both of which require the user to possess good knowledge of robot behavior and the performance of numerous experiments. The presented method was integrated within a hybrid robot architecture and evaluated in extensive computer simulations, showing a significant increase in the performance over a non-adaptive system and a performance comparable to a non-learning CBR system that uses a hand-coded case library.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Temporal Features Vector Matching ( 2 nd stage of Case Selection ) Set of Spatially Matching cases Set of Spatially and Temporally Matching cases Case switching Decision tree Case Adaptation Case

This paper presents an approach to learning an optimal behavioral parameterization in the framework of a Case-Based Reasoning methodology for autonomous navigation tasks. It is based on our previous work on a behavior-based robotic system that also employed spatio-temporal case-based reasoning [3] in the selection of behavioral parameters but was not capable of learning new parameterizations. T...

متن کامل

Spatio - Temporal Case - Based Reasoning for Efficient Reactive Robot Navigation †

This paper presents an approach to automatic selection and modification of behavioral assemblage parameters for autonomous navigation tasks. The goal of this research is to make obsolete the task of manual configuration of behavioral parameters, which often requires significant knowledge of robot behavior and extensive experimentation, and to increase the efficiency of robot navigation by autom...

متن کامل

Spatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran

     Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...

متن کامل

Context-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network

Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...

متن کامل

Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning

In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002